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Neuroscience

Understanding the brain
From biology to psychology
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Science

The process of discovering
knowledge and mechanisms

Science is above all a method

“Science is not a political construct or a belief sys-
tem. Scientific progress depends on openness, trans-
parency, and the free flow of ideas and people.”

— Dr. Rush Holt, CEO of AAAS,
testimony to the House Committee on Science, Space, and Tech-
nology, Feb 8, 2017
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Science

The process of discovering
knowledge and mechanisms

Science helps shaping society
Autism and vaccines:
forged study: [Wakefield et al, Lancet 1998]
⇒Drop in vaccination, measles outbreak

Loss of trust in science is very costly
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Science in the age of data:
good process = reproducibility
better: generalization & reuse

1 Statistical reproducibility

2 Computational reproducibility
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1 Statistical reproducibility
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Brain theories will just emerge from data

Biology, neuroscience, psychology...
rely on working hypotheses

G Varoquaux 7



Brain theories will just emerge from data

Biology, neuroscience, psychology...
rely on working hypotheses

G Varoquaux 7



Why the tyranny of the Working hypothesis?

Reductionist
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Why the tyranny of the Working hypothesis?

Reductionist

http://www.tylervigen.com/spurious-correlations
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The failure of the working hypothesis
Reductionist approach: ⇒ fragmentation

Six blind men
and the elephant

Collapse of statistical control
Analytic variability ⇒ uncontrolled variance
Publication incentives ⇒ selection bias

[Ioannidis 2008]
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1 Generalization as a solution

Generalization
can build broader theories

[Varoquaux and Poldrack 2019]

Paradigm 1: Seen
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Generalization
can build broader theories

[Varoquaux and Poldrack 2019]

Paradigm 1: Seen Paradigm 2: Imagined
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“A theory is a good theory if it satisfies two requirements:
It must accurately describe a large class of observa-
tions on the basis of a model that contains only a few
arbitrary elements, and it must make definite predic-
tions about the results of future observations.”

Stephen Hawking, A Brief History of Time.
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1 Generalization as a solution

[Varoquaux... 2018]

Across tasks: atlasing cognition

Cat

Dog

Ouaf

Miaou

Predicting cognitive
operations on
unseen paradigms

Models
heterogeneity

⇒ evidence beyond
⇒ a paradigm

G Varoquaux 12



1 Generalization as a solution

[Abraham... 2017]

Across subjects: biomarkers
Predicting autism status to new sites

Many samples overcome heterogeneity
strong generalization
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1 Cross-validation failure: not enough data

[Varoquaux 2017]

In the literature, effect sizes decrease with sample sizes
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1 Cross-validation failure: not enough data

[Varoquaux 2017]

Analytic variability strikes back
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2 Computational reproducibility
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2 Trust and productivity: reproducible research
“if it’s not open and verifiable by others, it’s not science,
or engineering, or whatever it is you call what we do“

— V. Stodden, The scientific method in practice

Computational reproducibility:
Automate everything
Control the environment
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2 Libraries enable reproducible science

Reproducibility
Rerun and come to the same conclusion
An argument for copying all scripts
for each paper Better: a tag in git
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2 Libraries enable reproducible science

Reproducibility
Rerun and come to the same conclusion
An argument for copying all scripts
for each paper Better: a tag in git

Copying scripts scales very poorly:
Accumulation of half-dead code ⇒ cognitive overload
No consolidation across studies
Each study has different variants of different bugs

Garden of forking code
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2 Libraries enable reproducible science

Reproducibility
Rerun and come to the same conclusion
An argument for copying all scripts
for each paper Better: a tag in git
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2 Libraries enable reproducible science

Reproducibility
Rerun and come to the same conclusion
An argument for copying all scripts
for each paper

Frozen food

Reusability
Apply the approach to a new problem
Being able to understand, modify,
run in new settings
Generalization is the true scientific test

Reusable computational science = libraries
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2 Building foundations of neuroimaging with computers

scikit-learn
Make research in machine-learning
models and algorithm useable to people
who do not understand them

Challenges: Variety of that space
Statistical concepts � coding concepts

ni

nilearn
Make it easy to answer neuroimaging
problems with them

Challenges: Onboarding technology-adverse users
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2 Building foundations of neuroimaging with computers

Scikit-learn, an impact

1/2 million returning users 12 000 citations
OS EmployerWindows Mac

Linux

Industry Academia

Other

50%
20%

30%

63%

3%

34%

1 monthly users reading the docsG Varoquaux 19



2 Research code 6= software library
Factor 10 in time investment

Corner cases in algorithm (numerical stability)

Multiple platforms and library versions

Documentation

Making it simpler (and get less educated users)

User and developer support ( ∼ 100 mails/day)

An impact on science and society

Technical + scientific tradeoffs

Ease of install/ease of use rather than speed

Focus on “old science”

Software good practice mandatory:
- Automated testing
- Version control

Open source to grow a community
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2 Reusable science
scikit-learn is the new machine-learning textbook
nilearn is the new neuroimaging review article

Experiments reproduced
at each commit

eg : brain reading
nilearn.github.io/auto examples/02 decoding/plot miyawaki reconstruction.html
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2 Reusable science
scikit-learn is the new machine-learning textbook
nilearn is the new neuroimaging review article

Experiments reproduced
at each commit

eg : brain reading
nilearn.github.io/auto examples/02 decoding/plot miyawaki reconstruction.html

Resource intensive Continuous integration:
Data ⇒ Fight for good open data
Computation ⇒ Find good algorithms and tradeoffs

Forces us to distill the literature (as a review)
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2 Reusable science
scikit-learn is the new machine-learning textbook
nilearn is the new neuroimaging review article

Experiments reproduced
at each commit

eg : brain reading
nilearn.github.io/auto examples/02 decoding/plot miyawaki reconstruction.html

Package development consolidates
science and moves it outside the lab

scipy-lectures: living book for Python in science
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@GaelVaroquaux

Statistical and computational reproducibility

Statistical
Variability in question & methods makes control hard
Aim for generalization:

Broader theories in the face of heterogeneity
[Varoquaux and Poldrack 2019]

Computational
Libraries enable reproducibility
Aim for reusability

Easy of reuse and reproducibility fosters innovation

Open data is essential



References I

A. Abraham, M. P. Milham, A. Di Martino, R. C. Craddock,
D. Samaras, B. Thirion, and G. Varoquaux. Deriving
reproducible biomarkers from multi-site resting-state data: An
autism-based example. NeuroImage, 147:736–745, 2017.

J. P. Ioannidis. Why most discovered true associations are inflated.
Epidemiology, 19(5):640–648, 2008.

G. Varoquaux. Cross-validation failure: small sample sizes lead to
large error bars. NeuroImage, 2017.

G. Varoquaux and R. A. Poldrack. Predictive models avoid
excessive reductionism in cognitive neuroimaging. Current
Opinion in Neurobiology, 2019.

G. Varoquaux, Y. Schwartz, R. A. Poldrack, B. Gauthier,
D. Bzdok, J. Poline, and B. Thirion. Atlases of cognition with
large-scale brain mapping. PLOS Comp Bio, 2018.


	Statistical reproducibility
	Computational reproducibility
	
	References

