Computational and statistical reproducibility in data-intensive neuroscience

<u>AeuroSpin</u>

40

Ínría Gaël Varoquaux

Neuroscience 000 % ٢ Understanding the brain From biology to psychology HO B 0 40

Science

The process of discovering knowledge and mechanisms

Science is above all a method

Science

The process of discovering knowledge and mechanisms

Science is above all a method

"Science is not a political construct or a belief system. Scientific progress depends on openness, transparency, and the free flow of ideas and people." — Dr. Rush Holt, CEO of AAAS, testimony to the House Committee on Science, Space, and Technology, Feb 8, 2017

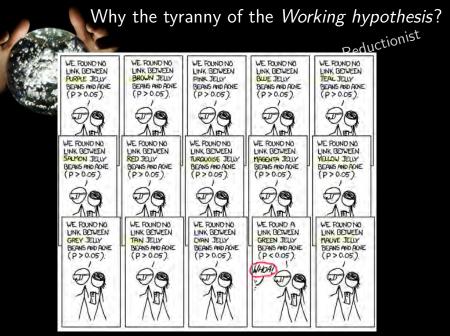
Science

The process of discovering knowledge and mechanisms

 Science helps shaping society
 ■ Autism and vaccines: forged study: [Wakefield et al, Lancet 1998]
 ⇒ Drop in vaccination, measles outbreak Loss of trust in science is very costly Science in the age of data: good process = reproducibility better: generalization & reuse %

1 Statistical reproducibility

2 Computational reproducibility

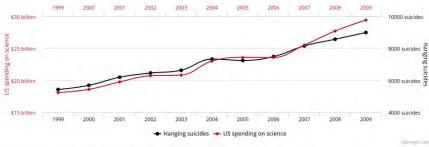

Brain theories will just emerge from data

Brain theories will just emerge from data

Biology, neuroscience, psychology... rely on working hypotheses

> □ YES □ NO

G Varoquaux


https://xkcd.com/882/

Why the tyranny of the Working hypothesis? Reductionist

US spending on science, space, and technology correlates with

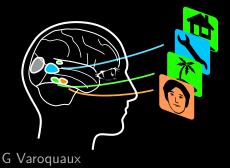
Suicides by hanging, strangulation and suffocation

Correlation: 99.79% (r=0.99789126)

lease sector (1, 5, 70% and Management dealerging and Serlers for Department A.P. merson

http://www.tylervigen.com/spurious-correlations G Varoquaux

The failure of the working hypothesisReductionist approach: \Rightarrow fragmentation

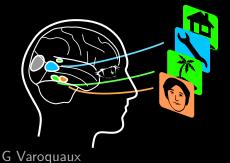

Six blind and the elephant

> Collapse of statistical control ■ Analytic variability ⇒ uncontrolled variance ■ Publication incentives ⇒ selection bias [loannidis 2008]

1 Generalization as a solution

Generalization can build broader theories [Varoquaux and Poldrack 2019]

Paradigm 1: Seen

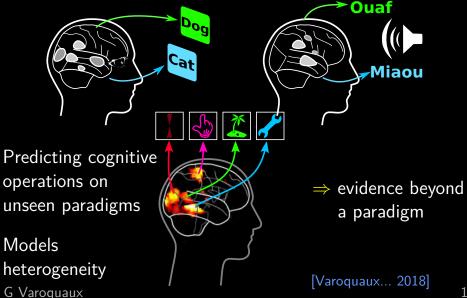


1 Generalization as a solution

Generalization can build broader theories [Varoquaux and Poldrack 2019]

Paradigm 1: Seen

Paradigm 2: Imagined



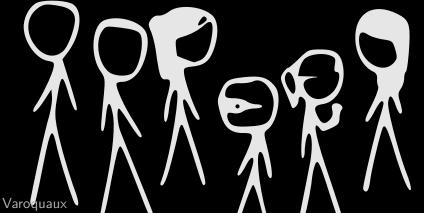
"A theory is a good theory if it satisfies two requirements: It must **accurately describe a large class of observations** on the basis of a model that contains only a few arbitrary elements, and it must **make definite predictions about the results of future observations**."

Stephen Hawking, A Brief History of Time.

1 Generalization as a solution

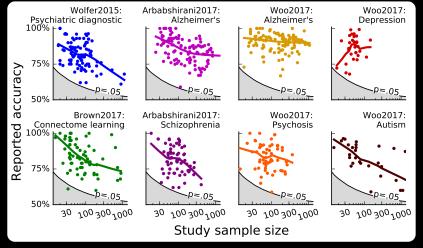
Across tasks: atlasing cognition

1 Generalization as a solution


G

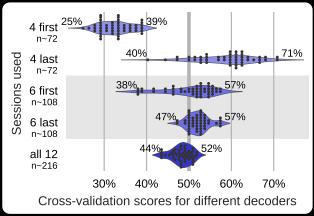
Across subjects: biomarkers

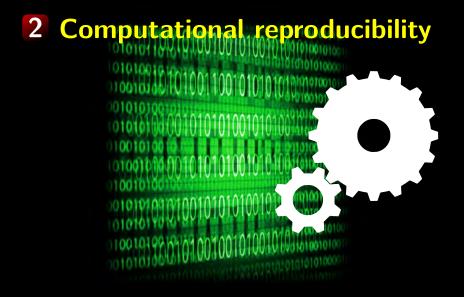
Predicting autism status to new sites [Abraham... 2017]


Many samples overcome heterogeneity

strong generalization

1 Cross-validation failure: not enough data


In the literature, effect sizes decrease with sample sizes


[Varoquaux 2017]

1 Cross-validation failure: not enough data

Analytic variability strikes back

[Varoquaux 2017]

2 Trust and productivity: reproducible research

"if it's not open and verifiable by others, it's not science, or engineering, or whatever it is you call what we do"

- V. Stodden, The scientific method in practice

Computational reproducibility:
Automate everything
Control the environment

Reproducibility

Rerun and come to the same conclusion An argument for copying all scripts for each paper Better: a tag in git


Reproducibility

Rerun and come to the same conclusion An argument for copying all scripts for each paper Better: a tag in git

Copying scripts scales very poorly:
Accumulation of half-dead code ⇒ cognitive overload
No consolidation across studies
Each study has different variants of different bugs Garden of forking code

Reproducibility

Rerun and come to the same conclusion An argument for copying all scripts for each paper Better: a tag in git

2 Libraries enable reproducible science

Reproducibility

Rerun and come to the same conclusion An argument for copying all scripts for each paper

Reusability

Apply the approach to a new problem

Being able to understand, modify, run in new settings

Generalization is the true scientific test

Reusable computational science = **libraries**

scikit-learn

nilearn

Make research in machine-learning models and algorithm useable to people who do not understand them

lear

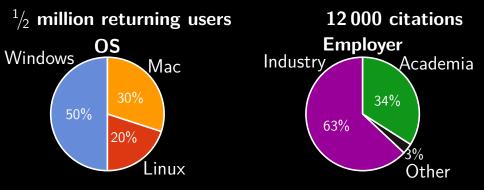
Make it easy to answer neuroimaging problems with them

scikit-learn

Make research in machine-learning models and algorithm useable to people who do not understand them

Challenges: Variety of that space Statistical concepts >> coding concepts

nilearn


Make it easy to answer neuroimaging problems with them

Challenges: Onboarding technology-adverse users

2 Building foundations of neuroimaging with computers

Scikit-learn, an impact

¹ monthly users reading the docs

2 Research code \neq software library

Factor 10 in time investment

Corner cases in algorithm (numerical stability)

Multiple platforms and library versions

Documentation

Making it simpler (and get less educated users)

■User and developer support (~ 100 mails/day)

An impact on science and society

2 Research code \neq software library

Factor 10 in time investment

Technical + scientific tradeoffs

- Ease of install/ease of use rather than speed
- Focus on "old science"

■ Software good practice mandatory:

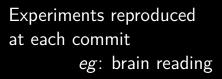
- Automated testing
- Version control

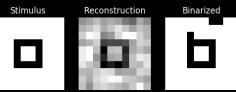
Open source to grow a community

scikit-learn is the new machine-learning textbook nilearn is the new neuroimaging review article

 $nilearn.github.io/auto_examples/02_decoding/plot_miyawaki_reconstruction.html$

scikit-learn is the new machine-learning textbook nilearn is the new neuroimaging review article




nilearn.github.io/auto_examples/02_decoding/plot_miyawaki_reconstruction.html

Resource intensive Continuous integration:

- $\blacksquare Data \qquad \Rightarrow Fight for good open data$
- Computation \Rightarrow Find good algorithms and tradeoffs Forces us to distill the literature (as a review)

scikit-learn is the new machine-learning textbook nilearn is the new neuroimaging review article

 $nilearn.github.io/auto_examples/02_decoding/plot_miyawaki_reconstruction.html$

Package development consolidates science and moves it outside the lab

scikit-learn is the new machine-learning textbook nilearn is the new neuroimaging review article

Experiments reproduced at each commit

eg: brain reading

scipy-lectures: living book for Python in science

Package development consolidates science and moves it outside the lab

Statistical and computational reproducibility

Statistical


Variability in question & methods makes control hard
 Aim for generalization:

Broader theories in the face of heterogeneity [Varoquaux and Poldrack 2019]

Computational

- Libraries enable reproducibility
- Aim for reusability

Easy of reuse and reproducibility fosters innovation

Open data is essential

References I

- A. Abraham, M. P. Milham, A. Di Martino, R. C. Craddock, D. Samaras, B. Thirion, and G. Varoquaux. Deriving reproducible biomarkers from multi-site resting-state data: An autism-based example. *NeuroImage*, 147:736–745, 2017.
- J. P. loannidis. Why most discovered true associations are inflated. *Epidemiology*, 19(5):640–648, 2008.
- G. Varoquaux. Cross-validation failure: small sample sizes lead to large error bars. *NeuroImage*, 2017.
- G. Varoquaux and R. A. Poldrack. Predictive models avoid excessive reductionism in cognitive neuroimaging. *Current Opinion in Neurobiology*, 2019.
- G. Varoquaux, Y. Schwartz, R. A. Poldrack, B. Gauthier,
 D. Bzdok, J. Poline, and B. Thirion. Atlases of cognition with large-scale brain mapping. *PLOS Comp Bio*, 2018.